

SOPORTE VITAL EXTRACORPÓREO (III)

MONOGRAFICO

Para Enfermería de Cuidados Intensivos

Kesare EIGUREN GOITIZ

Marisol GARCÍA ASENJO

Perfusionistas

Marzo 2017

DISEÑO DEL CURSO:

1ª parte: Definición

Componentes del sistema

Indicaciones y Tipos

2º parte: Manejo y cuidados del paciente con soporte

mecánico

Revisión de los distintos parámetros

hemodinámicos y respiratorios

3ª parte: Riesgos y complicaciones

Cuanto mas complejo es el aparataje, mas frecuentes son la complicaciones.

CARDIOVASCULARES

Insuficiencia del VI Insuficiencia del VD Edema agudo de pulmón

HEMATOLÓGICAS

Hemorrágicas Trombóticas

INFECCIOSAS

Relacionadas con el dispositivo
No relacionadas con el dispositivo

COMPLICACIONES ECMO

NEUROLÓGICAS

Accidente vascular cerebral
Accidente isquémico transitorio

DEL DISPOSITIVO

ESPECÍFICAS

Percutáneas Vasculares periféricas Sangrado

HEMODINÁMICAS CARDÍACAS	 Arritmias, hipotensión, taponamiento cardiaco, hipovolemia, bajo gasto, hipoperfusión tisular
RESPIRATORIAS	 Hipoxemia, hipercapnia, hipoventilación, neumonía, atelectasia.
RENALES	Oliguria/anuria, desequilibrios hidro-electrolíticos
DIGESTIVAS / METABÓLICAS	 Ílio paralítico, estreñimiento, vómitos, intolerancia a la nutrición, hiperglucemias
NEUROLÓGICAS	Crisis comiciales, agitación, ansiedad, dolor
HEMATOLÓGICAS	Trombopenia, hemorragias, hematomas, trombosis.
INMUNOLÓGICAS	• Infección, sépsis.
TEGUMENTARIAS	Ulceras por presión
COMPLICACIONES DEL SISTEMA	 Decanulación accidental, roturas, burbujas o fugas en el sistema, obstrucción.

EVENTOS ADVERSOS relacionados con:

LAS CÁNULAS Y TUBULADURAS

DURANTE LA CANULACIÓN:

- Dificultad para el implante por arteria de mala calidad.
- Imposibilidad de canular por punción.
- Posición inadecuada
- Embolia aérea en el punto de conexión de cánulas al circuito

- Control de posición con ECO
- Conexión con técnica adecuada

Canulación del vaso equivocado (cánula venosa en la arteria carótida)

DURANTE LA ASISTENCIA (I):

DESPLAZAMIENTO:

Asegurar las cánulas monitorizando y marcando el punto de distancia a la entrada

No aplicar tensión a las cánulas, asegurarlas a la pierna, con apósito transparente

Estabilizar las conexiones y dejar visible el punto de entrada

Inflamación Infección Hemorragia

DURANTE LA ASISTENCIA (II):

DECANULACIÓN - DESCONEXIÓN

 Clampar inmediatamente la cánula y parar la bomba del ECMO.

(Valorar la recanulación del paciente y el purgado de nuevo sistema para el cambio rápido del mismo.)

MEDIDAS

- Realizar una correcta fijación de todas las cánulas.
- Vigilar diariamente esta fijación.
- Extremar el cuidado en las movilizaciones del paciente.

DURANTE LA ASISTENCIA (III):

RUPTURA DE LAS TUBULADURAS:

Clampar la línea arterial y la venosa lo mas rápido posible y parar la bomba.

DISPONER SIEMPRE DE DOS CLANES PRÓXIMOS AL CIRCUITO Y SISTEMA

DURANTE LA ASISTENCIA (IV):

Salida de sangre por tubuladura arterial:

Si la tubuladura es de conexión rápida: conectar rápidamente

- Si sale por otro nivel de la tubuladura o no tiene conexión rápida:
- 1) Clampar cánula arterial y venosa lo más próximo al paciente.
- 2) Parar la bomba.
- 3) Aumentar frecuencia respiratoria y FiO2 del respirador.
- 4) Incrementar dosis de drogas vasopresoras si hipotensión. Iniciar RCP si es necesario.
- 5) Si precisa cambio del sistema por entrada de aire. Preparar material para el purgado del nuevo sistema.
 - Valorar la recanulación del paciente y el purgado de nuevo sistema para el cambio rápido del mismo.

DURANTE LA ASISTENCIA (V):

Oclusiones de las tubuladuras:

- Si la oclusión se produce en el lado de entrada de sangre al oxigenador, se pueden formar burbujas de gas por cavitación.
- Si la oclusión es el lado de la salida de sangre del oxigenador, se podría generar un alto nivel de flujo en un tiempo reducido y una baja presión en el lado sanguíneo.
- En ambos casos tendríamos un aumento de revoluciones y un flujo (I/m) bajo.

DURANTE LA ASISTENCIA (VI):

Desconexión de llaves de tres pasos colocadas en el circuito ECMO

- Revisar el correcto sellado tanto durante el purgado como en cada turno.
- Evitar su manipulación para la extracción de analíticas de forma sistemática.
- No administrar medicación directamente en la ECMO.

(propofol-depósitos de grasa)

La entrada de aire en el circuito implica el cambio de todo el sistema.

Eventos adversos relacionados con:

LOS COMPONENTES DEL SISTEMA

FALLO DEL OXIGENADOR:

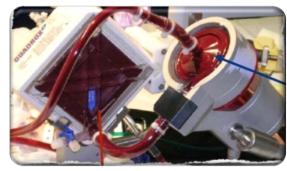
Sospechamos fallo del oxigenador cuando se vaya reduciendo la PO2/FIO2 del ECMO progresivamente hasta niveles de < 150 o que el CO2 sea cada vez más costoso de lavar.

- **AUMENTAR FIO2 AL 100%** y repetir gasometría 1 hora después.
- Revisar oxigenador para detectar presencia de coagulo o fibrina.
- Si persiste PAO2/FIO2 ≤150, hay que cambiar el oxigenador (por lo tanto todo el sistema) en las 4 horas siguientes.
- Las causas mas frecuentes del deterioro del oxigenador suelen ser la aparición de trombos y depósitos de fibrina en su interior.

Salida de líquido por oxigenador (por el orificio de salida del CO2):

- Es normal que salgan gotas de vapor de agua.
- Si hay salida de plasma (espuma amarillenta).
- Si la relación pO2 / FiO2 del oxigenador es >150, realizar gasometría del ECMO cada 4 horas y si disminuye cambiar el sistema.
- Si la relación pO2 / FiO2 del oxigenador es <150, cambiar el sistema.
- Si hay duda si el líquido es vapor de agua o plasma, realizar del líquido una determinación con tira reactiva urinaria para determinar la existencia de proteínas.

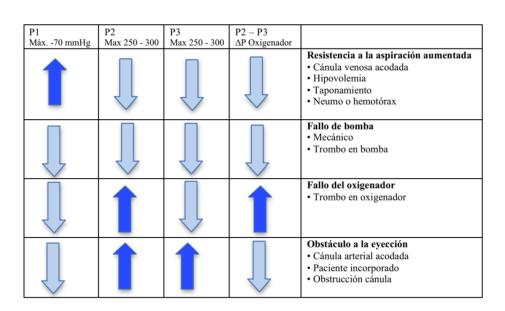
El mezclador de gases emite un pitido:

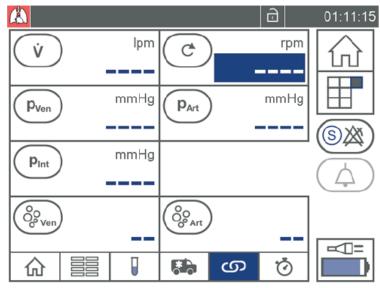


DISFUNCION DE LA BOMBA:

Causas:

- ▶ Presencia de coágulos.
- Necesidad de flujos elevados y por tanto altas revoluciones de la bomba.
- →Incremento de la temperatura del motor.
- → Disminución de la potencia por desgaste.



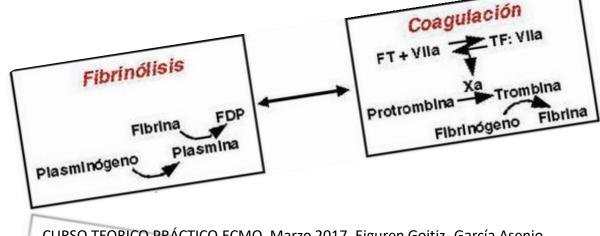


Variaciones en el flujo de bomba:

Alteración en las presiones del ECMO:

Riesgos y complicaciones relacionadas con:

LA ANTICOAGULACIÓN


SI la anticoagulación es excesiva riesgo de HEMORRAGIAS

RIESGOS:

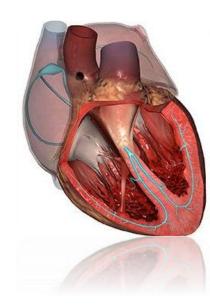
- Isquemia, trombosis, sangrado, ...
- Hemorragia intracraneal, hemorragia pulmonar, hemorragia retroperitoneal.
- Trombocitopenia inducida por la heparina.

MEDIDAS

- Establecer una adecuada pauta de anticoagulación.
- **✓** Control frecuente del TCA.
- ✓ Analíticas seriadas.
- Revisión quirúrgica para localizar puntos sangrantes.
- ✓ Aplicación de sustancias hemostáticas.
- ✓ Valorar aplicación de sustancias antifibrinolíticas.

Riesgos y complicaciones relacionados con:

LA PATOLOGÍA



- Distensión ventrículo izdo.
- Insuficiencia respiratoria
- Taponamiento cardiaco
- Disfunción hepática
- Insuficiencia renal
- Alteraciones neurológicas
- Hemorragias
- Hemólisis
- Infecciones

Distensión ventrículo izdo.:

- Aumentar del soporte inotrópico.
- •Implantar un balón intraaórtico de contrapulsación.
- •Si estas estrategias resultan insuficientes, será necesaria la descarga activa del VI, con medidas quirúrgicas.

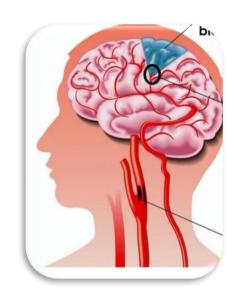
Insuficiencia respiratoria:

RIESGOS

- Barotrauma
- Neumotorax
- Reclutamiento alveolar
- Atelectasias

MEDIDAS

- Gasometrías seriadas
- Parámetros de descanso respiratorio
- Higiene bronquial, Fisioterapia
- Control RX.


Alteraciones neurológicas:

RIESGOS

- PERFUSIÓN CEREBRAL INADECUADA
- *TROMBOSIS
- *****HEMORRAGIAS
- **INFARTO**

MEDIDAS

- Control de la anticoagulación
- Ventanas de sedación
- Pruebas diagnósticas ante sospechas

Infecciones:

Protocolo de bacteriemia cero Protocolo de neumonía cero



Riesgos relacionados con

LA ORGANIZACIÓN

SEGURIDAD como <u>riesgo</u> de daño. La seguridad no es solamente efecto adverso, si no que además es que no haya riesgo.

FORMACIÓN CLÍNICA Y TECNOLÓGICA

TRABAJO EN EQUIPO

ELABORACIÓN DE PROTOCOLOS

• CONOCIMIENTO EXAHUSTIVO DEL MATERIAL

1ª Clase

• COMPRESIÓN DE LA FISIOLOGÍA

3ª Clase

2ª Clase

• SEGURIDAD: Conocer y prevenir los posibles eventos adversos y complicaciones

